Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
SAMPLE
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
OTHgroup
SAMPLE
Commits
b5dbfb02
Commit
b5dbfb02
authored
9 months ago
by
Wachter, Christoph
Browse files
Options
Downloads
Patches
Plain Diff
(CW) added (experimental) script to optimized hyperparameters
parent
f53da738
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
sample/helpers/HyperparameterOptimization.py
+258
-0
258 additions, 0 deletions
sample/helpers/HyperparameterOptimization.py
with
258 additions
and
0 deletions
sample/helpers/HyperparameterOptimization.py
0 → 100644
+
258
−
0
View file @
b5dbfb02
#!/usr/bin/env python3
# Copyright (C) 2024 Oliver T. Hofmann
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
#
# If you are using this software for scientific purposes, please cite it as:
# L Hoermann et al., Computer Physics Communications (2019), 143-155
import
itertools
import
numpy
as
np
import
multiprocessing
from
sample
import
HyperParameters
,
PairwiseFeaturesData
,
DiscreteBayesianLearner
from
sample.helpers.Utilities
import
trainLearner
,
createNonInteractingPriorMean
def
apply_kwargs
(
fn
,
kwargs
):
return
fn
(
**
kwargs
)
# for multiprocessing with kwargs, see:
# https://stackoverflow.com/questions/45718523/pass-kwargs-to-starmap-while-using-pool-in-python
def
starstarmap
(
pool
,
fn
,
kwargs_iter
):
"""
Only apply keyword arguments to a function that is mapped with mulitprocessing.
"""
args_for_starmap
=
zip
(
itertools
.
repeat
(
fn
),
kwargs_iter
)
return
pool
.
starmap
(
apply_kwargs
,
args_for_starmap
)
def
writeDictToFile
(
file
,
dictionary
):
"""
Write dictionary to file in a simple fashion.
"""
for
key
,
value
in
dictionary
.
items
():
file
.
write
(
"
%s:%s
\n
"
%
(
key
,
value
))
def
constructHyperParamCombinations
(
E_ads_std
,
E_pair_std
,
DFT_noise
,
decay_length
,
decay_power
,
correlation_length
,
dmin
,
dmax
,
feature_threshold
,
feature_dimension
,
atom_indices
,
original_geometry_indices
=
[
None
],
prior_cov_kernel
=
[
"
additive
"
],
):
"""
Construct a list containing all possible combinations of the given hyperparameters.
"""
inp
=
locals
()
hyperparam_keys
=
tuple
([
*
inp
])
hyperparam_vals
=
tuple
([
*
inp
.
values
()])
hyperparams_combinations
=
[]
for
val
in
itertools
.
product
(
*
hyperparam_vals
):
hyperparams_combinations
.
append
(
dict
(
zip
(
hyperparam_keys
,
val
)))
return
inp
,
hyperparams_combinations
def
_createLearner
(
proj
,
learner_name
,
property_key
,
unit_string
=
"
eV
"
,
is_gas_phase
=
False
,
**
kwargs
,
):
"""
Helper function to create learner.
"""
hyperparams
=
HyperParameters
(
name
=
learner_name
,
property_key
=
property_key
,
unit_string
=
unit_string
,
**
kwargs
)
features_data
=
PairwiseFeaturesData
.
fromHyperParameters
(
proj
,
hyperparams
)
learner
=
DiscreteBayesianLearner
.
fromHyperParameters
(
proj
,
hyperparams
)
learner
.
setFeaturesData
(
features_data
)
# set prior
learner
.
calculatePrior
()
prior_mean
=
createNonInteractingPriorMean
(
proj
,
learner
.
features_data
,
property_key
,
is_gasphase
=
is_gas_phase
)
learner
.
setPriorMean
(
prior_mean
)
return
learner
class
HyperParamOptimization
:
"""
Class for hyperparameter optimization
"""
def
__init__
(
self
,
proj
,
property_key
,
# determines training set and learned property
gas_phase_property_key
=
None
,
training_set
=
None
,
gas_phase_training_set
=
None
,
unit_string
=
"
eV
"
,
learner_name
=
"
hyperparam_opt
"
,
is_gas_phase
=
False
,
n_processes
=-
1
,
):
self
.
proj
=
proj
self
.
unit_string
=
unit_string
self
.
property_key
=
property_key
self
.
gas_phase_property_key
=
gas_phase_property_key
self
.
learner_name
=
learner_name
self
.
is_gas_phase
=
is_gas_phase
self
.
outfile
=
"
hyperparam_opt.out
"
if
n_processes
==
-
1
:
n_processes
=
multiprocessing
.
cpu_count
()
self
.
n_processes
=
n_processes
if
training_set
is
None
:
self
.
training_set
=
self
.
proj
.
getConfigurationSetByProperty
(
self
.
property_key
)
else
:
self
.
training_set
=
training_set
if
self
.
gas_phase_property_key
is
not
None
:
if
gas_phase_training_set
is
None
:
self
.
gas_phase_training_set
=
self
.
proj
.
getConfigurationSetByProperty
(
self
.
gas_phase_property_key
)
else
:
self
.
gas_phase_training_set
=
gas_phase_training_set
def
setHyperParams
(
self
,
E_ads_std
,
E_pair_std
,
DFT_noise
,
decay_length
,
decay_power
,
correlation_length
,
dmin
,
dmax
,
feature_threshold
,
feature_dimension
,
atom_indices
,
original_geometry_indices
=
[
None
],
prior_cov_kernel
=
[
"
additive
"
],
):
"""
Create and set all hyperparameter combinations used in the optimization.
"""
kwargs
=
locals
().
copy
()
kwargs
.
pop
(
"
self
"
)
self
.
input
,
self
.
hyperparam_combinations
=
constructHyperParamCombinations
(
**
kwargs
)
def
writeOptimizationInfo
(
self
):
file
=
open
(
self
.
outfile
,
"
w
"
)
file
.
write
(
"
Starting hyperparameter optimization
\n
"
)
file
.
write
(
"
Printing hyperparamters given as input:
\n\n
"
)
if
not
hasattr
(
self
,
"
input
"
):
file
.
write
(
"
No hyperparameter input given! Please call
'
setHyperParams
'
first.
\n
"
)
file
.
write
(
"
Exiting
"
)
file
.
close
()
RuntimeError
(
"
No hyperparameter input given! Please call
'
setHyperParams
'
first.
"
)
writeDictToFile
(
file
,
self
.
input
)
file
.
write
(
"
\n
"
)
file
.
write
(
f
"
Number of hyperparameter combinations:
{
len
(
self
.
hyperparam_combinations
)
}
\n
"
)
file
.
write
(
f
"
Using
{
self
.
n_processes
}
processes
\n
"
)
file
.
write
(
"
Looping over all possible combinations of input values
\n\n
"
)
file
.
close
()
def
writeRSME
(
self
,
file
,
errors
):
if
self
.
gas_phase_property_key
is
None
:
file
.
write
(
"
\n
"
)
file
.
write
(
f
"
RSME_LOOCV:
{
errors
[
0
]
}
\n
"
)
file
.
write
(
f
"
error_max_LOOCV:
{
errors
[
1
]
}
\n
"
)
file
.
write
(
"
\n
"
)
else
:
file
.
write
(
"
\n
"
)
file
.
write
(
f
"
Gas-phase RMSE_LOOCV:
{
errors
[
0
]
}
\n
"
)
file
.
write
(
f
"
Gas-phase error_max_LOOCV:
{
errors
[
1
]
}
\n
"
)
file
.
write
(
f
"
RSME_LOOCV:
{
errors
[
2
]
}
\n
"
)
file
.
write
(
f
"
error_max_LOOCV:
{
errors
[
3
]
}
\n
"
)
file
.
write
(
"
\n
"
)
def
getRSMEForHyperParams
(
self
,
**
kwargs
):
errors
=
[]
reduced_training
=
False
prior_from_gas_phase
=
None
# learn gas phase prior if gas_phase_property_key is specified
if
self
.
gas_phase_property_key
is
not
None
and
not
self
.
is_gas_phase
:
learner_gas_phase
=
_createLearner
(
self
.
proj
,
self
.
learner_name
+
"
_gas_phase
"
,
self
.
gas_phase_property_key
,
unit_string
=
self
.
unit_string
,
is_gas_phase
=
True
,
**
kwargs
)
learner_gas_phase
.
addConfigurationSet
(
self
.
gas_phase_training_set
)
trainLearner
(
learner_gas_phase
,
self
.
gas_phase_training_set
,
training_set
=
self
.
gas_phase_training_set
)
prior_from_gas_phase
=
learner_gas_phase
.
interactions_mean
errors
.
append
(
learner_gas_phase
.
RMSE_LOOCV
)
errors
.
append
(
learner_gas_phase
.
error_max_LOOCV
)
# main learner
learner
=
_createLearner
(
self
.
proj
,
self
.
learner_name
,
self
.
property_key
,
unit_string
=
self
.
unit_string
,
is_gas_phase
=
self
.
is_gas_phase
,
**
kwargs
)
learner
.
addConfigurationSet
(
self
.
training_set
)
if
prior_from_gas_phase
is
not
None
:
learner
.
prior_mean
[
learner
.
features_data
.
n_1body
:]
=
prior_from_gas_phase
[
learner
.
features_data
.
n_1body
:]
trainLearner
(
learner
,
possible_configurations
=
self
.
training_set
,
training_set
=
self
.
training_set
)
errors
.
append
(
learner
.
RMSE_LOOCV
)
errors
.
append
(
learner
.
error_max_LOOCV
)
return
errors
def
runOptimization
(
self
):
"""
Run parallel hyperparameter optimization.
"""
self
.
writeOptimizationInfo
()
delim_string
=
"
##############################
\n
"
n_proc
=
self
.
n_processes
n_hyp
=
len
(
self
.
hyperparam_combinations
)
min_rsme
=
np
.
inf
min_errors
=
None
min_hyperparams
=
None
if
self
.
gas_phase_property_key
is
None
:
n_rmse
=
0
else
:
n_rmse
=
2
# divide the hyperparameter combinations into chunks
hyperparam_chunks
=
[
self
.
hyperparam_combinations
[
i
:
i
+
n_proc
]
for
i
in
range
(
0
,
n_hyp
,
n_proc
)
]
for
chunk
in
hyperparam_chunks
:
# create learners using a single thread to save memory
pool
=
multiprocessing
.
Pool
(
n_proc
)
for
i
,
errors
in
enumerate
(
starstarmap
(
pool
,
self
.
getRSMEForHyperParams
,
chunk
)):
file
=
open
(
self
.
outfile
,
"
a
"
)
file
.
write
(
delim_string
)
file
.
write
(
"
Hyperparamters:
\n
"
)
writeDictToFile
(
file
,
chunk
[
i
])
self
.
writeRSME
(
file
,
errors
)
if
errors
[
n_rmse
]
<
min_rsme
:
min_rsme
=
errors
[
n_rmse
]
min_errors
=
errors
min_hyperparams
=
chunk
[
i
]
file
.
write
(
"
This is the new minimum!
\n\n
"
)
file
.
write
(
delim_string
)
file
.
close
()
pool
.
close
()
# write final output
file
=
open
(
self
.
outfile
,
"
a
"
)
file
.
write
(
"
Finished iterating through all hyperparameter combinations
\n\n
"
)
file
.
write
(
"
Result with best RSME:
\n\n
"
)
file
.
write
(
delim_string
)
file
.
write
(
"
Hyperparamters:
\n
"
)
writeDictToFile
(
file
,
min_hyperparams
)
self
.
writeRSME
(
file
,
min_errors
)
file
.
write
(
delim_string
)
file
.
write
(
"
\n
"
)
file
.
write
(
"
Have a nice day.
\n
"
)
file
.
close
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment