# https://github.com/facebookresearch/fairseq/issues/3741 from omegaconf import DictConfig, OmegaConf, open_dict import torch cp_path = 'model/xlsr_53_56k.pt' cp = torch.load(cp_path) cfg = DictConfig(cp['cfg']) dd = OmegaConf.to_container(cfg, resolve=True) for k,v in dd.items(): if not isinstance(v, dict): continue for key, _ in v.items(): if key.split("_")[:2] == ["eval", "wer"]: print(k,key) with open_dict(cfg): cfg.task.pop('eval_wer') cfg.task.pop('eval_wer_config') cfg.task.pop('eval_wer_tokenizer') cfg.task.pop('eval_wer_post_process') cfg.task.pop('autoregressive') cp['cfg'] = cfg torch.save(cp, 'model/xlsr_53_56k_new.pt')