diff --git a/similarity.ipynb b/similarity.ipynb
index 2ed5af1fe39cc012524336c102ff841e829e8076..502c9c1859245a0310e611c9e30f7a7a03cbda2a 100644
--- a/similarity.ipynb
+++ b/similarity.ipynb
@@ -2,7 +2,7 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": 49,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -17,7 +17,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 50,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -55,7 +55,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 51,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -76,7 +76,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": 52,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -118,18 +118,28 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": 53,
    "metadata": {},
    "outputs": [],
    "source": [
     "#count the number of cards in each deck and put in in a dictionary\n",
     "\n",
     "def count(decks_,decks2cards):\n",
-    "\n",
+    "    \n",
+    "    deck_1 = decks_[decks_['equivalent'] >= 0]\n",
+    "    #print(deck_1)\n",
+    "    mask = decks2cards['deckuid'].isin(decks_['uid'])\n",
+    "    \n",
+    "    \n",
+    "    decks2cards_ = decks2cards.loc[mask]\n",
+    "    \n",
     "    decks_['count'] = 0\n",
+    "    #print(decks2cards['deckuid'])\n",
+    "    #print(decks_['uid'])\n",
+    "    \n",
+    "    #decks_['count'].loc[decks_['uid'] == decks2cards['deckuid'][1]] += d2c['amount']\n",
     "\n",
-    "\n",
-    "    for j,d2c in decks2cards.iterrows():\n",
+    "    for j,d2c in decks2cards_.iterrows():\n",
     "\n",
     "\n",
     "        #decks_['count'].loc[decks_['uid'] == d2c['deckuid']] += d2c['amount']\n",
@@ -140,12 +150,14 @@
     "\n",
     "\n",
     "    decks_\n",
-    "    return(decks_)\n"
+    "    return(decks_)\n",
+    "\n",
+    "\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": 54,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -165,7 +177,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 17,
+   "execution_count": 55,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -202,8 +214,8 @@
     "        if count > best_count:\n",
     "            best_count = count\n",
     "            best_card = card['uid']\n",
-    "            print(best_count)\n",
-    "            print(best_card)\n",
+    "            #print(best_count)\n",
+    "            #print(best_card)\n",
     "    \n",
     "    return best_card\n",
     "    \n",
@@ -215,32 +227,268 @@
    "execution_count": null,
    "metadata": {},
    "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 57,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>uid</th>\n",
+       "      <th>count</th>\n",
+       "      <th>equivalent</th>\n",
+       "      <th>similarity</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1284241</td>\n",
+       "      <td>71</td>\n",
+       "      <td>6</td>\n",
+       "      <td>0.084507</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>1284242</td>\n",
+       "      <td>72</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0.027778</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>1284385</td>\n",
+       "      <td>72</td>\n",
+       "      <td>9</td>\n",
+       "      <td>0.125000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>1284246</td>\n",
+       "      <td>72</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0.027778</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>1284248</td>\n",
+       "      <td>71</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0.028169</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>51394</th>\n",
+       "      <td>1457421</td>\n",
+       "      <td>91</td>\n",
+       "      <td>4</td>\n",
+       "      <td>0.043956</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>51402</th>\n",
+       "      <td>1457427</td>\n",
+       "      <td>91</td>\n",
+       "      <td>3</td>\n",
+       "      <td>0.032967</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>51411</th>\n",
+       "      <td>1457433</td>\n",
+       "      <td>72</td>\n",
+       "      <td>3</td>\n",
+       "      <td>0.041667</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>51424</th>\n",
+       "      <td>1457441</td>\n",
+       "      <td>74</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.013514</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>51431</th>\n",
+       "      <td>1457400</td>\n",
+       "      <td>72</td>\n",
+       "      <td>4</td>\n",
+       "      <td>0.055556</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>14205 rows × 4 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "           uid  count  equivalent  similarity\n",
+       "0      1284241     71           6    0.084507\n",
+       "1      1284242     72           2    0.027778\n",
+       "2      1284385     72           9    0.125000\n",
+       "5      1284246     72           2    0.027778\n",
+       "7      1284248     71           2    0.028169\n",
+       "...        ...    ...         ...         ...\n",
+       "51394  1457421     91           4    0.043956\n",
+       "51402  1457427     91           3    0.032967\n",
+       "51411  1457433     72           3    0.041667\n",
+       "51424  1457441     74           1    0.013514\n",
+       "51431  1457400     72           4    0.055556\n",
+       "\n",
+       "[14205 rows x 4 columns]"
+      ]
+     },
+     "execution_count": 57,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 66,
+   "metadata": {},
+   "outputs": [],
    "source": [
-    "#get your best new card here\n",
     "\n",
-    "decks_ = create_decks_(decks)\n",
+    "def get_new_card(input):\n",
+    "\n",
+    "    decks_ = create_decks_(decks)\n",
     "\n",
-    "decks_ = calc_equivalent(decks_,input,decks2cards)\n",
+    "    decks_ = calc_equivalent(decks_,input,decks2cards)\n",
     "\n",
-    "decks_ = count(decks_,decks2cards)\n",
+    "    decks_ = count(decks_,decks2cards)\n",
     "\n",
-    "decks_ = calc_similarity(decks_)\n",
+    "    decks_ = calc_similarity(decks_)\n",
     "\n",
     "\n",
     "\n",
-    "largest_similarity = decks_.sort_values(by=[\"similarity\"],ascending=False)[\"similarity\"] [1]\n",
-    "most_similar_deck =  decks_.sort_values(by=[\"similarity\"],ascending=False)[\"uid\"][1]\n",
+    "    largest_similarity = decks_.sort_values(by=[\"similarity\"],ascending=False)[\"similarity\"] [1]\n",
+    "    most_similar_deck =  decks_.sort_values(by=[\"similarity\"],ascending=False)[\"uid\"][1]\n",
     "\n",
-    "print(most_similar_deck)\n",
-    "print(largest_similarity)\n",
+    "    #print(most_similar_deck)\n",
+    "    #print(largest_similarity)\n",
     "\n",
-    "best_deck = decks2cards.loc[decks2cards['deckuid'] == most_similar_deck]\n",
+    "    best_deck = decks2cards.loc[decks2cards['deckuid'] == most_similar_deck]\n",
     "\n",
     "\n",
     "\n",
     "\n",
-    "new_card = find_best_card(best_deck,input)\n",
-    "print(new_card)\n",
+    "    new_card = find_best_card(best_deck,input)\n",
+    "    print(new_card)\n",
+    "    \n",
+    "    return new_card, most_similar_deck"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "21\n"
+     ]
+    }
+   ],
+   "source": [
+    "##start main here\n",
+    "\n",
+    "number_of_cards = 2\n",
+    "\n",
+    "list_of_new_cards = []\n",
+    "best_deck = 0\n",
+    "\n",
+    "\n",
+    "\n",
+    "for i in range(number_of_cards):\n",
+    "    \n",
+    "    new_card, best_deck = get_new_card(input)\n",
+    "    \n",
+    "    df = pandas.DataFrame({\"uid\":[len(input['uid'] + 2)],\n",
+    "                  \"carduid\":[new_card],\n",
+    "                  \"amount\":[1]})\n",
+    "\n",
+    "    input = pandas.concat([input,df])\n",
+    "    \n",
+    "    list_of_new_cards.append(new_card)\n",
+    "    \n",
+    "\n",
+    "    \n",
+    "print(list_of_new_cards)\n",
+    "print(best_deck)\n",
+    "\n",
+    "##end main here\n",
     "\n"
    ]
   },
@@ -272,6 +520,41 @@
    "outputs": [],
    "source": []
   },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
   {
    "cell_type": "code",
    "execution_count": 108,