Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
Perisponge
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
König, Albert Wilhelm
Perisponge
Commits
3079a7c2
Commit
3079a7c2
authored
2 years ago
by
König, Albert Wilhelm
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
976c7429
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
functionality.py
+113
-0
113 additions, 0 deletions
functionality.py
with
113 additions
and
0 deletions
functionality.py
0 → 100644
+
113
−
0
View file @
3079a7c2
from
pathlib
import
Path
import
numpy
as
np
import
networkx
as
nx
import
matplotlib
as
mpl
import
matplotlib.pyplot
as
plt
def
calc_flow_dfs
(
g
,
precip
,
retention
=
None
,
psi
=
None
):
"""
Calculates runoff from each subcatchment in the graph, taking into consideration precipitation, runon and retention volume.
Args:
g (nx.DiGraph): Graph of drainage network
precip (float): Precipitation in mm
retention (np.array): Retention volumes for [n for n in g.nodes]
psi (float): Discharge coefficient, not implemented
Returns:
np.array: array with runoff from each catchment
"""
# dfs search for root
order
=
nx
.
dfs_successors
(
g
.
reverse
(),
"
alois-hamtod-weg
"
)
# initialisieren der konstanten werte
nodes
=
np
.
array
([
n
for
n
in
g
.
nodes
])
if
retention
is
None
:
retention
=
np
.
zeros
(
len
(
nodes
))
precip
=
calc_VQR
(
g
,
precip
)
precip
=
np
.
array
([
precip
[
n
]
for
n
in
nodes
])
vq
=
np
.
maximum
(
precip
-
retention
,
0
)
retention
=
np
.
maximum
(
retention
-
precip
,
0
)
for
element
in
reversed
(
order
):
i
=
np
.
where
(
nodes
==
element
)[
0
]
mask
=
np
.
isin
(
nodes
,
order
[
element
])
vq
[
i
]
+=
max
(
vq
[
mask
].
sum
()
-
retention
[
i
],
0
)
return
vq
def
calc_VQR
(
g
,
precip
):
"""
Returns VQR in m³, takes precip in mm and area in ha
Args:
g (nx.DiGraph or nx.Graph): graph with subcatchments and assigned area in ha
precip (float): precipitation in mm
Returns:
dict: dictionary with node as key and VQR as value
"""
def
vr
(
node
):
return
g
.
nodes
[
node
][
"
area_ha
"
]
*
precip
*
10
return
{
n
:
vr
(
n
)
for
n
in
g
.
nodes
}
def
set_retention
(
node
,
volume
,
graph
,
retention
=
None
):
"""
Creates a new or overwrites an existing array at the correct position to insert a retention volume for a given subcatchment.
Args:
node (str): Name of subcatchment ot add retention volume to
volume (float): Volume of retention
graph: (nx.DiGraph): Graph of subcatchments
retention (np.array): Existing retention array
Returns:
np.array: Array with retention volume for each node in [n for n in g.nodes]
"""
if
retention
is
None
:
retention
=
np
.
zeros
(
len
(
g
.
nodes
))
retention
[
np
.
where
(
np
.
array
(
graph
.
nodes
)
==
node
)]
=
volume
return
retention
def
plot_vq
(
g
,
subcat
,
df_storms
,
retention
=
None
,
odir
=
None
):
"""
plots runoff from specified subcatchment for various design storms
Args:
g (nx.DiGraph): Graph of hydrological model
subcat (str): Name of subcatchment for which to plot runoff
df_storms (pd.DataFrame): Dataframe containing the precipitation volumes for return periods and durations
retention (np.array): Numpy-Array containing retention volumes for each subcatchment
odir (Path): Path for plot to write to, not implemented
Returns:
None
"""
nodes
=
np
.
array
(
g
.
nodes
)
index_of_interest
=
np
.
where
(
nodes
==
subcat
)[
0
][
0
]
storms_of_interest
=
df_storms
.
columns
.
values
durations
=
df_storms
.
index
.
values
fig
,
ax1
=
plt
.
subplots
(
constrained_layout
=
True
,
figsize
=
[
8.5
,
6
])
fig
.
suptitle
(
f
"
Abflussvolumina nach Jährlichkeit und Dauerstufe -
{
subcat
}
"
)
sm
=
plt
.
cm
.
ScalarMappable
(
cmap
=
mpl
.
colormaps
[
"
cool
"
],
norm
=
mpl
.
colors
.
LogNorm
(
vmin
=
1
,
vmax
=
100
))
for
return_period
in
storms_of_interest
:
vq
=
list
(
map
(
lambda
p
:
calc_flow_dfs
(
g
,
p
,
retention
=
retention
)[
index_of_interest
],
df_storms
[
return_period
].
values
))
ax1
.
plot
(
durations
,
vq
,
color
=
mpl
.
colormaps
[
"
cool
"
](
mpl
.
colors
.
LogNorm
(
vmin
=
1
,
vmax
=
100
)(
return_period
)))
ax1
.
set
(
ylabel
=
"
Niederschlagsmenge [m³]
"
,
xlabel
=
"
Dauer [h]
"
,
xlim
=
[
0
,
1440
],
xticks
=
np
.
arange
(
0
,
1620
,
180
))
ax1
.
set_ylim
(
bottom
=
0
)
ax1
.
xaxis
.
set_major_formatter
(
lambda
x
,
pos
:
f
"
{
x
/
60
:
.
0
f
}
"
)
formatter
=
mpl
.
ticker
.
LogFormatter
(
10
,
labelOnlyBase
=
False
,
minor_thresholds
=
(
np
.
inf
,
np
.
inf
))
fig
.
colorbar
(
sm
,
ax
=
ax1
,
ticks
=
[
1
,
3
,
5
,
10
,
30
,
100
],
format
=
formatter
,
label
=
"
Jährlichkeit
"
)
custom_lines
=
[
mpl
.
lines
.
Line2D
([
0
],
[
0
],
color
=
"
black
"
,
lw
=
1
),
mpl
.
lines
.
Line2D
([
0
],
[
0
],
color
=
"
black
"
,
lw
=
1
,
linestyle
=
"
dotted
"
)]
fig
.
legend
(
custom_lines
,
[
"
Niederschlagsvolumen
"
,
"
Niederschlagsintensität
"
],
loc
=
"
upper left
"
,
bbox_to_anchor
=
(
0.1
,
0.95
))
ax1
.
grid
(
zorder
=
0
)
odir
=
Path
(
r
"
Y:\PROJECTS\PeriSponge\07_Fallstudie\Feldbach\Detailanalyse\Modell-Check\02_subcats\plots
"
)
odir
.
mkdir
(
parents
=
True
,
exist_ok
=
True
)
#fig.savefig(odir/"niederschlagsvolumina_oedter.png")
return
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment